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What is Support Vector Machines (SVM) ?

« A powerful versatile algorithm for both classification and regression
« Classification predictions are based on a so called margin a street
« Classification with a largest margin, a high way
« Training is based on minimizing number of instances inside margins

* Regression predictions are based on a so called margin street
» Regression with smallest margin, a bikers lane

« Training is based on minimizing number of instances outside margins

« So its predicting something; lets look at that !

Zealand



Evaluation of SVM?

« Advantages
* Very good for complex small/medium sized data sets
* White box; knows in details how it works
« Easy to use

« Many forms: Linear, non-linear, with without kernel etc....

» Disadvantages
» Slow prediction,
« Complex, pipelining with scaling is needed
» Greedy algorithm, (which must be stopped)
« Slow for huge data sets
* No probability outcome for classification
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The Iris flower case

Data set with 150 Iris pictures of 3 different species (50 each)

‘~ o
Virginica sV, Setosa

Figure 4-22. Flowers of three iris plant species™
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Types of SVM classification

* Linear SVM: straight line
 Choose between approaches: hard-margin or soft margin
 Use LinearSVC, SVC (kernel = linear) or SGDClassifier class

 Non-linear: curve
 Choose between techniques polynomial kernel or similarity features
 Use SVC (kernel = poly) or SVC (kernel = rbf)

* In practise use Claudius rule: simple ones first
 LinearSVC
« SVC only for polynomial, max degree 3 to avoid overfitting
« SGD (only if out of core problems)
* ANN (Artificial Neural Network) good alternative for complex data sets
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Choose and build classifier(s)

 Find margin interval (street edge) defined by support vectors

« Make a choice on the decision boundaries (Linear/curved)

* Apply scaling

« The aimisto find variables and values that split the data into groups
« Maximizing the margin interval

« The decision boundaries is based on petal length and petal width
 Qutcome s Iris Virginica OR Iris Setosa, BUT NOT probability
» Using several training algorithm to see which one is best...

Lets see how it looks on next slide!
BUT First watch an easy video introduction SVM Introduction (20 minutes)
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https://www.youtube.com/watch?v=efR1C6CvhmE

Hard margin classification

SVM decision boundary on Iris data set
Eitheritisin oritis out
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Figure 5-1. Large margin classification




SVM Scaling

« Utilize scaling to solve the problem of sensitivity to feature scales
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Figure 5-2. Sensitivity to feature scales
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Code for Iris data set

* Import libraries
« Set up a pipeline with scaling

iris = datasets.load_iris()
X =iris["data"|[:, (2, 3)] # petal length, petal width
y = (iris["target"] == 2).astype(np.float64) # Iris virginica

svm_clf = Pipeline(]
("scaler", StandardScaler()),
("linear_svc", LinearSVC(C=1, loss="hinge", random_state=42)),

)

svm__clf.fit(X, y)
svm__clf.predict([[5, 2]]) from sklearn.datasets

« What about probability. NO! Cannot predict probability
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SVM Outliers problems

« Hard margin is sensitive to outliners

« And some times impossible to use
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Figure 5-3. Hard margin sensitivity to outliers

We are lucky: Soft margin is the answer!
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Soft margin

« Allows margin violations

« C=1: Large margin many violations; C=100 Small margin but few violations
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Figure 5-4. Large margin (left) versus fewer margin violations (right)

* But there are better solutions, but more time greedy Nonlinear SVM Classification

Zealand

11



Nonlinear SVM classification: polynomial features

« Add extra polynomials e.g. up to degree 3 for each feature: X, = (X,)? and X; = (X,)3to the data set.
Remember linear regression: h(X) = 6,+ 0, X, +0,X, +..... + 0 X, 0, + 0, (X))t +0,(X)?+ 0,5(X,)3
Making the data set linear separable as shown for degree 2 below
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Figure 5-5. Adding features to make a dataset linearly separable
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Code for Moon data set

* Import libraries
« Set up a pipeline with polynomial features and scaling

import make_moons
X, Yy = make _moons(n_samples=100, noise=0.15, random_state=42)

polynomial_svm_clf = Pipeline(|
("poly_features", PolynomialFeatures(degree=3)),
("scaler", StandardScaler()),
("svm_clf", LinearSVC(C=10, loss="hinge", random_state=42))

)

polynomial_svm_ clf.fit(X, y)

« What about probability. NO! Cannot predict probability
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Nonlinear SVM with polynomial features

 Now we get soft boundary lines
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Figure 5-6. Linear SVM classifier using polynomial features

« But there are problems. Oh no not that again®
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Problems with Polynomial features

Low degree cannot handle complex data set
High degree have too many features => very slow

But we are lucky again.

The kernel trick

« Solution A: Polynomial kernel

« Solution B: Similarities features
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Nonlinear SVM with polynomial kernel

Soft boundary lines
Overfitting is an issue
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Figure 5-7. SVM classifiers with a polynomial kernel

No more problems. But the math behind is complicated.
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Computational complexity

Big O notation O(m x n)
m: number of instances
n: number of features

Table 5-1. Comparison of Scikit-Learn classes for SVM classification

Time complexity Out-of-core support Scaling required Kernel trick
LinearSVvc O(m X n) No Yes No
SGDClassifier O(mxn) Yes Yes No
SVC O(m* x n) to O(m* x n) No Yes Yes

Example: m =10.000 n=5
LinearSVC: 50.000 0.1 second
SVC(10.000 x 10.000 x 5 =500.000.000, 1.000 seconds !
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Types of SVM regression

Idea: Largest possible street with many instances on the street and few instances off the street/margins
(a crowded biker’ lane)

Linear SVM: straight line
 Choose between approaches: hard-margin or soft margin
 Use LinearSVR similar to LinearSVC

Non-linear: curve
 Use SVR, SVR (kernel = poly) similar to SVC (kernel = poly)
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Under the hood or Assignments

Under the hood or What goes on behind the stage: Complicated mathematics !
| will skip it.

It is time for discussion and solving a few assignments in groups

* Problems problems enjoy!

« SVM lris Exercise ‘\\"%fm‘m */47%7
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https://www.youtube.com/watch?v=ZRGCeM1enhw
http://micl-easj.dk/Machine%20Learning/Opgaver%20Alm/SVM%20Iris.pdf

